Formula 1

-Formula 2

Formula 3

-Formula 4

Formula 5

B : Belt Width (mm)

B : Belt Width (mm)

How to Calculate Conveying Capacity of Conveyor -Maximum Speed of Conveyor and Calculation Example -

WEB WEB WEB WEB WEB

WEB

WEB

WEB

CVSTA

CVSTB

CVSTN

CVSTP

0.5

1

1

1

1. Calculating Effective Tension 1A. How to Calculate Pulley Mass on Return Side *Calculation formula for Flat Belt Head Drive Conveyor *The calculation methods for Center Drive and other conveyors are different. Drive Side Return Side n : No. of Pulleys on Return Side (n) L: Distance between Pulleys $Wr = 1/4[\pi \cdot (D^2 - d^2)] \cdot Lr \cdot Wr 1 \cdot n/1000^2$ π : Pi (3.14159) D : Pulley O.D. on Return Side (mm) d : Pulley I.D. on Return Side (mm) Wr : Pulley Mass on Return Side (kg) Wr1 : Pullev Unit Mass = 2.8 g/cm³ Lr : Pulley Length on Return Side (mm) Belt Support Roller Head Drive Conveyor Image 1B. How to Calculate Effective Tension of Belt * The effect from belt support rollers is ignored. $Te = \{ [(Wg + Wb \cdot L \cdot B/1000^2) \cdot \mu 1] \}$ $+(Wr+Wb\cdot L\cdot B/1000^{2})\cdot \mu 2]$ Table 1 - Friction Coefficient of Belt and Base Plate (Reference Value) Friction Coefficient µ1 Te : Effective Tension (N) Table Materia Wg : Workpiece Mass (kg) Total mass of the workpiece loaded onto a flat belt Flat Belt Timing Belt Wb : Belt Unit Mass (kg/m²) [Select from "Belt Specification" from P. 1279~] Stainless Steel 0.40 0.30 L : Length between Pulleys for Conveyor in Use (mm) Aluminum µ1 : [Select from Table 1] g : Gravitational Acceleration = 9.80665m/s² $\mu 2 = 0.2^*$ [From Table 1 on **P. 2252**] * For Head Drive Conveyor, Pulley + Steel Sheet Support 2. Determining Allowable Tension and Safety Ratio of Belt 2A. How to Calculate Tight Side Tension of Belt Table 2 - Friction Coefficient of Drive Side Pulley and Belt **Pulley Surface Condition** μ0 $F_{M1} = [e^{\mu 0 \cdot \theta} / (e^{\mu 0 \cdot \theta} - 1)] \cdot T_{e}$ Flat Belt and Pulley 0.20 FM1 : Tight Side Tension (N) 0.20 Stainless Steel Belt and Pulley e : Base of Natural Logarithm (2.71828) 1.00 Sprocket and Plastic Chain θ : Contact Angle of Belt and Pulley = 3.14 (rad) [Contact angle of the head drive conveyor should be 180°] Timing Belt and Pulley 1.00 $\mu 0$: [Select from Table 2] 2B. How to Calculate Initial Tension per Belt Unit Table 3 - Initial Tension per Belt Unit Fm2=Te+Tc•B No. of Plies N/mm FM2 : Initial Tension of Belt (N) 0.15 Te : Effective Tension of Belt (N) 2 0.30 Tc : Initial Tension per Belt Unit (N/mm) [Select from Table 3] 3 0.45 2C.How to Calculate Safety Ratio of Belt Compare FM1 and FM2 and use the larger value as the maximum tension "FM" to calculate maximum tension per belt unit "C". С=Fм/В C : Max. Tension per Belt Unit (N/mm) FM : Max. Tension (N) B : Belt Width (mm) $S = \sigma/C$ S : Safety Ratio of Belt (Determination of the safety ratio varies depending on your operating conditions, etc.) σ : Allowable Tension of Belt (N/mm) [Select from "Belt Specification" from **P. 1279**~]

Calculating Belt Speed	Conveyor Typ	e Pd1/Pd2	P
A. Calculate the power requirement using Formula 6. 3C. Max. Belt Speed at No-load	SVKA	0.5	11
-Formula 6	SVKB	0.5	11
$\begin{array}{c} P = Pm \cdot \eta / 1000 \\ \hline \\ Y : Power Requirement (kW) \end{array} Vmax = [(Vm/i) \cdot (\pi \cdot DD/1000)] \\ \hline \\ /(Pd1/Pd2) \\ \hline \\ \end{array}$	SVKN	1	12
	SVKR	1	12
η : Machine Efficiency = 0.5 Vmax : Max. Belt Speed (m/min) m : Motor Output (W) Vm : Motor Synchronous Rotation Speed (rpm) [1500rpm@50Hz/1800rpm@60Hz] i : Motor Gearbead Beduction Ratio	CVGA	0.5	12
	rpm) CVGB	0.5	12
	CVGC	1	12
B. Calculate the maximum belt speed under load using Formula 7. DD : Outer Diameter from Pulley Center to Belt S		1	12
ula 7 Pd1/Pd2 : [Select from the gear ratio in unit for each conveyor model]	nveyor model] CVGN	1	12
V=102•60•P•g/Te	CVGP	1	12
	CVGR	1	12
: Belt Speed (m/min) : Gravitational Acceleration = 9.80665m/s ² maximum rotation speed of the belt is the upper limit. This maximum speed varies		1	12
		0.5	12
lepending on the conveyor type, power supply frequency; and gear head deceleration ratio.	CVSFC	0.5	12
	CVSFB	1	12
	CVSFD	1	12
Calculation Example: As an example, calculate the safety ratio and the maximum speed of a belt for the conveyor "SVKA".	CVSE	1	12
	CVSF	1	12
A. Calculate the pulley mass using Formula 1.	CVSX	1	12
Pulley 0.D. on Return Side =28.6mm Pulley Unit Mass = 2.8g/cm ³	CVSY	1	12
Pulley I.D. on Return Side = 8.2mm No. of Pulleys on Return Side = 1		2	12
Pulley Length on Return Side = 63mm π : Pi (3.14159)	CVMABM	2	12
Wr ≈ 0.10 kgFrom Formula 1	CVMASM	1	12
	CVMBTM	2	12
B. Calculate the effective tension of the belt using Formula 2.		2	12
Mass of Workpiece = 5kg Unit Length =2000mm Friction Coefficient of Belt and Base Plate =0.4 Belt Unit Mass = 1kg/m² Belt Width = 50mm Friction Coefficient of Belt and Pulley =0.2 Te = 20.42 NFrom Formula 2 Friction Coefficient of Belt and Pulley =0.2	CVMBSM	1	12
	CVLSA	1	12
	CVSJA	1	12
C.Using Formula 3 and Formula 4, calculate the tight side tension of the belt "FM1" and the initial		1	12
tension by design "Fm2" to determine the maximum tension "Fm".		1	12
Friction Coefficient of Belt and Pulley =0.2 Contact Angle of Belt and Pulley =3.14(rad)	CVDSA	1	12
Initial Tension per Belt Unit = 0.15 Belt Width = $50mm$ FM1≈43.76NFM2≈27.92NFM =FM1 or FM2, whichever is larger = FM1FM =FM2 or FM2, whichever is larger = FM1		1	12
		0.5	12
		1	12
$F_M \approx 43.76 \ N Determined from Formulae 3 and 4$	CVGTN	1	12
	CVGTP	1	12
D.Calculate the safety ratio "S" from the maximum tension per belt unit "C" to compare the result with	CVSTC	1	12
a given safety standard value.	CVSTR	1	12
C \approx 0.88Safety Ratio S > Safety Standard Value: CompliantS \approx 4.57From Formula 5Safety Ratio S < Safety Standard Value: NG	CVSPC	1	12
$S \approx 4.57$ From Formula 5 Safety Ratio 5 < Safety Standard Value: NG When Safety Standard Value is "2", S > 2 Compliant	CVSPA	1	12
	CVSSA	1	12
	CVSA	0.5	W
E.Calculate the belt speed under load using Formula 6 and Formula 7 and calculate the maximum belt speed at no-load using Formula 8 to verify that V is not greater than Vmax.	CVSB	1	W
Motor Output = 6W Machine Efficiency = 0.5	CVSC	0.5	W
V = 8.41 m/minFrom Formulae 6 and 7	CVSD	1	W
Motor Synchronous Rotation Speed = 1500 rpm@50 Hz Motor Gearhead Reduction Ratio = 5		1	W
Outer Diameter from Pulley Center to Belt Surface = 29.5 (Belt Thickness = 0.9)	CVSP	1	W
Gear Ratio in Unit = 0.5	CVSR	1	W
Vmax = 55.61 m/min ∴ V speed is compliantFormula 8	CVSW	1	W
		6 -	10