How to Calculate Conveying Capacity of Conveyor - Safety Ratio of Belt -

1. Calculating Effective Tension

$$
W r=1 / 4\left[\pi \cdot\left(D^{2}-d^{2}\right)\right] \cdot L r \cdot W r 1 \cdot n / 1000^{2}
$$

$$
\begin{aligned}
& \text { Wr: Pulley Mass on Return Side (kg) } \\
& \text { Wrro: Pulley Unit Mass }=2.8 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

B. How to Calculate Effective Tension of Belt
*The effect trom bett supportrollers is ignored.
$\mathrm{Te}=\left\{\left[\left(\mathrm{Wg}+\mathrm{Wb} \cdot \mathrm{L} \cdot \mathrm{B} / 1000^{2}\right) \cdot \mu 1\right]\right]$

: Effective Tension (N)

Wb : Belt Unit Mass (kgg) Total mass of the workpiece loaded onto a flat belt
L : Length between Pulleys for Conveyor in Use (mm)
: Belt Width (mm)
$\mathrm{g}:$ Gravitational Acceleration $=9.80665 \mathrm{~m} / \mathrm{s}^{2}$
H2 $=0$ [
${ }_{*}^{*}$ For Head Prive Convevor. Pulley + S \qquad
2. Determining Allowable Tension and Safety Ratio of Belt

2A. How to Calculate Tight Side Tension of Belt
\square
FM1 : Tight Side Tension (N)
$\mathrm{e}:$: Base of Natural Logarithm (2.71828)
$\theta:$ Contact

Table 2 - Friction Coefficient of Drive Side Pulley and Belt
Pulley Surface Condition
Flat Bett and Pulley
Stainless Steel Belt and Pulley
Sprocket and Plastic Chain
Timing Belt and Pulley

2B. How to Calculate Initial Tension per Belt Unit
Formula 4

Fw2: Intial Tension of Belt (N)
Te $:$:ffective Tension of Belt (N)
Tc : Initial Tension per Belt Unit (N/mm) [Select from Table 3]
B: Belt Width (mm)
2C. How to Calculate Safety Ratio of Belt Compare Fm1 and Fm2 and use the larger value as the maximum tension "Fm" to calculate maximum tension per belt unit " C ".

Formula 5 \quad| $\mathrm{C}=\mathrm{FM}^{2} / \mathrm{B}$ | |
| ---: | :--- |
| | $\mathrm{S}=\sigma / \mathrm{C}$ |

[^0]How to Calculate Conveying Capacity of Conveyor -
Maximum Speed of Conveyor and Calculation Example -

3. Calculating Belt Speed

Formula 6

3C. Max. Belt Speed at No-load

Formula 8 | Vmax $=[(\mathrm{Vm} / \mathrm{i}) \cdot(\pi \cdot \mathrm{DD} / 1000)]$ |
| :---: |
| $/(\mathrm{Pd} 1 / \mathrm{Pd} 2)$ |

Vmax : Max. Selt Speed (m/min)
Vm : Motor Synchronous Rotation Speed (rpm) [1500rpm@50Hz/1800rpm@60Hz] i: Motor Gearhead Reduction Ratio DD : Outer Diameter from Pulley Center to Bett Surface (mm)

Conveyor Type	Pd1/Pd2	Page
SVKA	0.5	1197
SVKB	0.5	1199
SVKN	1	1201
SVKR	1	1203
CVGA	0.5	1205
CVGB	0.5	1207
CVGC	1	1209
CVGD	1	1211
CVGN	1	1213
CVGP	1	1215
CVGR	1	1217
CVGW	1	1219
CVSFA	0.5	1221
CVSFC	0.5	1223
CVSFB	1	1225
CVSFD	1	1227
CVSE	1	1229
CVSF	1	1231
CVSX	1	1233
CVSY	1	1235
CVMATM	2	1237
CVMABM	2	1237
CVMASM	1	1237
CVMBTM	2	1239
CVMBBM	2	1239
CVMBSM	1	1239
CVLSA	1	1243
CVSJA	1	1245
CVSMA	1	1247
CVSMB	1	1249
CVDSA	1	1251
CVSTD	1	1253
CVGTA	0.5	1255
CVGTB	1	1256
CVGTN	1	1257
CVGTP	1	1258
CVSTC	1	1259
CVSTR	1	1260
CVSPC	1	1261
CVSPA	1	1262
CVSSA	1	1263
CVSA	0.5	WEB
CVSB	1	WEB
CVSC	0.5	WEB
CVSD	1	WEB
CVSN	1	WEB
CVSP	1	WEB
CVSR	1	WEB
CVSW	1	WEB
CVSTA	0.5	WEB
CVSTB	1	WEB
CVSTN	1	WEB
CVSTP	1	WEB

[^0]: C: Max. Tension per Belt Unit (N/mm)
 Fm : Max. Tension (N)
 Fm: Max. Tension (N)
 B : Belt Wiath (mm)
 s: Bet Wiath (mm)
 $\mathrm{s}:$ Saftet Ratio of Bett (Determination of the safety ratio varies depending on your operating conditions, etc.)
 $\sigma:$ Allowable Tension of Belt (N/mm) [Select from "Belt Specification" from P. 1279~]

