Material Properties of Suction Cups
Select an appropriate cup material according to the ussage environment, conditions, atmosphere, conductivity, and material and properties of the workpiece, <Material property list>

Pad Material		Rubber Type					Sponge Type
		Nitrile Rubber	Silicon Rubber	Conductive Silicon Rubber	Fluoro Rubber	Phlorosilicon Rubber	Chloroprene Rubber
Applications			SemiconductorsRemoval of molded partsThin materialsFood-related		Chemical atmosphere High Temperature	Removal of molded parts	Uneven surface
	Color	Black	White**	Black	Gray	Light Brown	Black
Max. Operating Temp.		$110^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$		$230^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$
Min. Operating Temp.		$-30^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$		$-10^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$	$-45^{\circ} \mathrm{C}$
Weather Resistance		\triangle	\bigcirc		\bigcirc	\bigcirc	\bigcirc
Ozone	Resistance	\times	\bigcirc		\bigcirc	\bigcirc	\bigcirc
Oil Resistance/ Solvent Resistanc	Gasoline, Light Oil	O	\triangle		\bigcirc	\triangle	\times
	Benzene, Toluene	$\times \sim \Delta$	\triangle		O	\triangle	\triangle
	Alcohol	O	\bigcirc		$\triangle \sim$	-	\triangle
	Ether	$\times \sim \Delta$	$x \sim \Delta$		$\times \sim \triangle$	-	\times
	Ketone	\times	\bigcirc		\times	-	\times
Acid Resistance Alkali Resistance	Water	\bigcirc	\bigcirc		O	-	\bigcirc
	Organic Acid	\times	\bigcirc		$\triangle \sim 0$	\cdot	\times
	Alkaline	\bigcirc	\bigcirc		\times	\bigcirc	\bigcirc

* Some products have black, semitransparent, and sky blue variations.
(Note) The above table just shows general properties of materials, which may vary depending on usage conditions and other factors and are not guaranteed.
\square Recommended methods of attaching and piping suction cups

When the suction face is air-permeable or has holes
 reduced.). Itis necessarar to tote measures suct as enlargging the e.
pipefine or using smaler cups and increasing the number of cups.

Sot workieiess such as paper, thin materials, plastic sheets, can be deformed or winkeed by
the suction torce. Use smaler cuppos or reduce the vaculum peressure.

It is ideal to instal a vacuacemenenterato mipingtip for each suction cup.
 the degrees of vacuum of the other cluss aer eeacced. Fake tal prevenition measures.

Pace suction cups on a workpiece so that it is well balanced. ake measuress such as abalancing the workpiece, preventingo sthe cups from sticking out of the
workpiece, and e eulaizing the loads ont the respective cups workpiece, and equalizing the loads on the respective uups.

When there is a danger of falling of the workpiece, install fall prevention guards and take
When therei is a d
safety measures.

When the workpiece undergoes rotary conveyance or acceleration

It is recommended to install a sensor or a gauge sot that the vactum pressure can be checked.
It is efective ad a saféty measure for defecting a bonomalitites and suction condition.

Selection Method of Vacuum Equipmen

fill

When selecting cups

 A. Calculation using a formula
B. Selection using the theoretical suction forc
2) Compare the load (mass) of the workpiece and the lifiting force to determine the cup area
3) Determine the cup shape, material, and whether to use a buffer (stroke) or not according to the usage environment and characterisicics, shape, and material of the workpiece.
(1) Calculation of suction force

(2) Compare the load (mass) of the workpiece and the lifting force to calculate the cup diameter (area) <Calculation using a formula>
Calculate the diameter of the suction cup from the suction force actually needed <Selection using the selection graph>

<Calululion using a formula Assign values of the conditions into red dirices.

$$
D=\sqrt{\frac{4}{3.14} \times \frac{1}{(P)} \times \frac{\mathbb{W}}{(\mathbb{C})} \times \frac{1}{(f)} \times 1000}
$$

$$
\sqrt{\frac{4}{3.14} \times \frac{1}{60} \times \frac{12}{4} \times 4 \times 1000}=15.96
$$

<Calculation using the selection graph>

